Performance Evaluation and Networks

Refresher course in Probability

General framework : random experiments

Experiments \& Randomness :

- System/Système (general meaning)
- Experiment/trial/expérience/tirage/épreuve
- Outcome/résultat/éventualité/réalisation
- Event/événement $=$ set of outcomes, which is interesting and measurable

Usual working hypothesis:

- only information $=$ list Ω of outcomes and a measure of their occurences via the measures of events.
- sometimes, no precise information about Ω, work focused on a reduced set of events of known measures.

General framework : random experiments

Experiments \& Randomness :

- System/Système (general meaning) on which one can do
- Experiment/trial/expérience/tirage/épreuve which produces
- Outcome/résultat/éventualité/réalisation unknown a priori
- Event/événement $=$ set of outcomes, which is interesting and measurable
Usual working hypothesis:
- only information $=$ list Ω of outcomes and a measure of their occurences via the measures of events.
- sometimes, no precise information about Ω, work focused on a reduced set of events of known measures.

Formalisation

Definition (espace probabilisé/de probabilités/probability space)

A probability space is a triplet $(\Omega, \mathscr{F}, \mathbb{P})$ where :

- Ω set called univers/sample space
- \mathscr{F} set of subsets of Ω (the "events")
- \mathbb{P} function from \mathscr{F} to \mathbb{R}
satisfying the following properties :
- \mathscr{F} tribu/ σ-algèbre/ σ-field :
- $\Omega \in \mathscr{F}$ and $\forall A \in \mathscr{F}, \bar{A} \in \mathscr{F}$
- $\forall\left\{A_{n}, n \geq 0\right\}$ finite or countable family from $\mathscr{F}, \cup_{n \geq 0} A_{n} \in \mathscr{F}$.
- \mathbb{P} probability measure :
- $\mathbb{P}(\Omega)=1$ and $\forall A \in \mathscr{F}, 0 \leq \mathbb{P}(A) \leq 1$
- for any finite or countable union of events $A_{n} \in \mathscr{F}$ pairwise disjoint, $\mathbb{P}\left(\cup_{n} A_{n}\right)=\sum_{n} \mathbb{P}\left(A_{n}\right)$.

Vocabulary \& first remarks

Vocabulary :

- $\omega \in \Omega$ called outcome/réalisation.
- $A \in \mathscr{F}$ called event/événement.
- ω is a realisation/réalise/realizes A if $\omega \in A$.
- Almost sure event : $A \in \mathscr{F}$ such that $\mathbb{P}(A)=1$
- Negligible event : $A \in \mathscr{F}$ such that $\mathbb{P}(A)=0$

Remarks :

- Events of interest are usually defined in extenso (list of elements ω) or by properties
- Axioms $\Rightarrow \varnothing \in \mathscr{F}$ and $\mathbb{P}(\varnothing)=0$
\triangle you may encounter almost sure events (resp. negligible) different from Ω (resp. \varnothing)

Examples of probability spaces

Examples of σ-algebra?

Examples of probability measures?

Examples of probability spaces

Examples of σ-algebra :

- any Ω and $\mathscr{F}=\mathscr{P}(\Omega)$
- Borelian sets $\mathscr{B}(\mathbb{R})$: smallest σ-algebra on \mathbb{R} containing open intervals.

Examples of probability measures :

- Case where $\mathscr{P}(\Omega)$ with finite or countable Ω : any function from Ω to \mathbb{R}_{+}whose sum over Ω is 1 can be extended in a probability measure over $\mathscr{P}(\Omega)$.
- Case of borelian sets $\mathscr{B}(\mathbb{R})$: Lebesgue measure (1901).

Some borelian sets can not be obtained by a finite number of countable unions / intersections of open intervals.

First properties

Proposition (complementary)

$$
\forall A \in \mathscr{F}, \mathbb{P}(\bar{A})=1-\mathbb{P}(A)
$$

Proposition (inclusion)

$$
\forall A, B \in \mathscr{F} \text {, si } A \subseteq B \text { alors } \mathbb{P}(A) \leq \mathbb{P}(B)
$$

Proposition (inclusion/exclusion)

$$
\forall A, B \in \mathscr{F}, \mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)
$$

Proposition (generalised inclusion/exclusion)

$$
\begin{aligned}
& \forall A_{1}, \ldots, A_{n} \in \mathscr{F}, \mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i} \cap A_{j}\right)+ \\
& \sum_{i<j<k} \mathbb{P}\left(A_{i} \cap A_{j} \cap A_{k}\right)-\cdots+(-1)^{n+1} \mathbb{P}\left(A_{1} \cap \ldots \cap A_{n}\right)
\end{aligned}
$$

First properties

Proposition (sub-additivity)

$$
\forall\left\{A_{n}, n \in \mathbb{N}\right\} \text { family from } \mathscr{F}, \mathbb{P}\left(\cup_{n \in \mathbb{N}} A_{n}\right) \leq \sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}\right)
$$

Proposition (continuity)

Let $A_{n}, n \geq 0$ be a sequence in \mathscr{F} such that $A_{0} \subseteq A_{1} \subseteq \cdots \subseteq A_{n} \subseteq A_{n+1} \subseteq \cdots$, let us denote $A=\cup_{n \geq 0} A_{n}$ its limit, we have $\mathbb{P}(A)=\lim _{n \rightarrow+\infty} \mathbb{P}\left(A_{n}\right)$.

Proposition (law of total probabilities)

Let $A \in \mathscr{F}$ and $\left\{B_{n}, n \geq 0\right\}$ a finite or countable family from \mathscr{F} which partitions Ω, then $\mathbb{P}(A)=\sum_{n \geq 0} \mathbb{P}\left(A \cap B_{n}\right)$.

Dependance between events

Definition (conditional probabilities)

Let $A, B \in \mathscr{F}$ with $\mathbb{P}(B)>0$, the probability of A knowing/given B is defined by $\mathbb{P}(A \mid B) \stackrel{\operatorname{def}}{=} \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$.

Definition (independance of evenments)

- $A, B \in \mathscr{F}$ are independent if $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$
- $\left\{A_{n}, n \in \mathbb{N}\right\}$ is a family of independent events of \mathscr{F} if for all $I \subseteq \mathbb{N}$ finite, $\mathbb{P}\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} \mathbb{P}\left(A_{i}\right)$.

Proposition (law of total probabilities, conditional version)

Let $A \in \mathscr{F}$ and $\left\{B_{n}, n \geq 0\right\}$ be a finite or countable family finie of \mathscr{F} which partitions Ω, then $\mathbb{P}(A)=\sum_{n \geq 0} \mathbb{P}\left(A \mid B_{n}\right) \mathbb{P}\left(B_{n}\right)$, with the convention that if $\mathbb{P}\left(B_{n}\right)=0$, the corresponding term is 0 .

Random variables (r.v.)

Definition (general r.v.)

A random variable with values in E is a function X from Ω to E, where $(\Omega, \mathscr{F}, \mathbb{P})$ is a probability space and E is equipped with the σ-algebra \mathscr{B}, such that $\forall B \in \mathscr{B}$, $\{X \in B\} \stackrel{\text { def }}{=}\{\omega \in \Omega \mid X(\omega) \in B\}=X^{-1}(B) \in \mathscr{F}$.

Definition (real r.v.)

A real random variable is a r.v. X from Ω to \mathbb{R} equipped with borelians, that is $\forall x \in \mathbb{R}$,

$$
\left.\left.\{X \leq x\} \stackrel{\text { def }}{=}\{\omega \in \Omega \mid X(\omega) \leq x\}=X^{-1}(]-\infty, x\right]\right) \in \mathscr{F} .
$$

Fonction de répartition / cumulative distribution function

Definition (cumulative distribution function of a real r.v.)

The cumulative distribution function for the r.v. X is the function F_{X} from \mathbb{R} to $[0,1]$ defined by $F_{X}(x)=\mathbb{P}(X \leq x)$.

Proposition (regularity of cumulative distrib. functions for real r.v.)
F cumulative distribution function if and only if:

- $\lim _{x \rightarrow-\infty} F(x)=0, \lim _{x \rightarrow+\infty} F(x)=1$,
- F non decreasing,
- F right continuous $\left(\forall x \in \mathbb{R}, \lim _{h \rightarrow 0, h>0} F(x+h)=F(x)\right)$.

Connaissance de $F_{X} \rightarrow \mathbb{P}(X>x), \mathbb{P}(a<X \leq b), \mathbb{P}(X=x), \ldots$

Discrete / continuous real random variable

Definition (discrete real r.v.)
A real r.v. X is called discrete if it gets its values from a finite or countable set $\left\{x_{n}, n \geq 0\right\}$ in \mathbb{R}. The function $f(x)=\mathbb{P}(X=x)$ is called mass/law/distribution (discret).

Definition (continuous real r.v.)

A real r.v. X is called continuous if its cumulative distrib function F satisties $F(x)=\int_{-\infty}^{x} f(u) d u$ where f from \mathbb{R} dans $[0,+\infty[$ is integrable, f is called density/loi/distribution (continuous).

Remarques : Let X a real r.v.,

- If X discrete, $f(x)=\mathbb{P}(X=x)$ fully characterizes F.
- If X continuous, F is continuous and $\forall x \in \mathbb{R}, \mathbb{P}(X=x)=0$.
- There exists other types of real r.v. (singular, some mixes ...)

Discrete / continuous real random variable

Proposition (usual utilisation of laws)

Let X real r.v. discrete/continuous of mass/density f, then for any borelian B of \mathbb{R},

- $\mathbb{P}(X \in B)=\sum_{x \in B} f(x)$ in the discrete case,
- $\mathbb{P}(X \in B)=\int_{x \in B} f(x) d x$ in the continuous case.

Remark : those formulas also apply to random vectors $X=\left(X_{1}, \ldots, X_{n}\right)$ with B borelian of \mathbb{R}^{n}, by putting multiple sums/integrals (cf next slides about random vectors).

Random vector \& joint distribution

Definition (cumulative distribution fct of a random vector)

Let X_{1}, \ldots, X_{n} be real r.v. over the same set Ω, the cumulative distrib fct of vector $X=\left(X_{1}, \ldots, X_{n}\right)$ is defined from \mathbb{R}^{n} to \mathbb{R} by $F\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} \mathbb{P}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)$.

Definition (discrete joint distribution)

If X takes a finite or countable nb of values, F is characterized by its joint distribution $f\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} \mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$.

Definition (continuous joint distribution)

The r.v. X_{1}, \ldots, X_{n} are said conjointly continuous if it exists f from \mathbb{R}^{n} to \mathbb{R}, integrable and called joint distribution, such that $F\left(x_{1}, \ldots, x_{n}\right)=\int_{u_{1}=-\infty}^{x_{1}} \cdots \int_{u_{n}=-\infty}^{x_{n}} f\left(u_{1}, \ldots, u_{n}\right) d u_{1} \ldots d u_{n}$.

Independence of r.v.

Definition (independence of r.v.)

X_{1}, \ldots, X_{n} real r.v. over the same Ω are said independent if the cumulative distrib fct of the vector satisfies $\forall x_{1}, \ldots, x_{n}$, $F\left(x_{1}, \ldots, x_{n}\right)=F_{X_{1}}\left(x_{1}\right) \cdots F_{X_{n}}\left(x_{n}\right)$ with the marginal distrib $F_{X_{i}}\left(x_{i}\right) \stackrel{\text { def }}{=} \mathbb{P}\left(X_{i} \leq x_{i}\right)=F\left(\infty, \ldots, x_{i}, \ldots, \infty\right)$.

Proposition (independence for discrete/continuous cases)

X_{1}, \ldots, X_{n} real discrete/continuous r.v. over the same Ω with masses/densities f_{1}, \ldots, f_{n} are independent iff $\forall x_{1}, \ldots, x_{n}$, the joint distribution satisfies $f\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) \cdots f_{n}\left(x_{n}\right)$ (at pts where $F_{\left(X_{1}, \ldots, X_{n}\right)}$ differentiable in the continuous case).

Espérance / moyenne / expectation / mean

Definition (expectation of a discrete real r.v.)

The expectation of a discrete real r.v. X of mass f is

$$
\mathbb{E}(X) \stackrel{\text { def }}{=} \sum_{x \in \mathbb{R}} x f(x)
$$

(finite or countable nb fini of non null terms) on condition that this sum is absolutely convergent (i.e. $\sum_{x \in \mathbb{R}}|x f(x)|<+\infty$).

Definition (expectation of a continuous real r.v.)
The expectation of a continuous real r.v. X of density f is

$$
\mathbb{E}(X) \stackrel{\text { def }}{=} \int_{-\infty}^{+\infty} x f(x) d x
$$

on condition that this integral is Lebesgue integrable (i.e. $\left.\int_{-\infty}^{+\infty}|x f(x)| d x<+\infty\right)$.

Expectation \& composition of functions

Proposition (composition for discrete real r.v.)

Let X discrete r.v. of mass f, and g function from \mathbb{R} to \mathbb{R}, then $Y=g(X)$ is a discrete real r.v. and $\mathbb{E}(g(X))=\sum_{x} g(x) f(x)$, on condition that this sum is absolutely convergent.

Proposition (composition for continuous real r.v.)

Let X continuous r.v. of density f, and g function from \mathbb{R} to \mathbb{R} such that $Y=g(X)$ is a continuous r.v., then $\mathbb{E}(g(X))=\int_{x} g(x) f(x) d x$, on condition that it is Lebesgue integrable.

Useful formulas to compute $\mathbb{E}(Y)$ without knowing the discrete or continuous law f_{Y} of Y ("Law of the Unconscious Statistician")

Expectation \& composition for random vectors

Proposition (composition for discrete joint distribution)

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ r.v. of discrete joint distrib f, and g function from \mathbb{R}^{n} to \mathbb{R}, then $Y=g(X)$ is a discrete r.v. and
$\mathbb{E}(g(X))=\sum_{x_{1}} \cdots \sum_{x_{n}} g\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right)$, on condition that this sum is absolutely convergent.

Proposition (composition for continuous joint distribution)

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ r.v. of continuous joint distrib f, and g function from \mathbb{R}^{n} to \mathbb{R} such that $Y=g(X)$ is a continuous r.v., then $\mathbb{E}(g(X))=\int_{x_{1}} \cdots \int_{x_{n}} g\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}$, on condition that it is Lebesgue integrable.

Simple extension of the case of real random variables (same proofs).

First properties of expectation/mean

Lemma ("telescope")

Let X real r.v.,

- If X discrete with values in $\mathbb{N}, \mathbb{E}(X)=\sum_{x=0}^{+\infty} \mathbb{P}(X>x)$.
- If X continuous of null density over \mathbb{R}_{-}^{*},

$$
\mathbb{E}(X)=\int_{x=0}^{+\infty} \mathbb{P}(X>x) d x
$$

Proposition (monotony/linearity/constants/decorrelation)

Let X, Y real r.v. discrete or continuous,

- If $X \geq 0, \mathbb{E}(X) \geq 0$.
- If $a, b \in \mathbb{R}, \mathbb{E}(a X+b Y)=a \mathbb{E}(X)+b \mathbb{E}(Y)$,
- $\mathbb{E}\left(\mathbb{1}_{\Omega}\right)=1$,
- X, Y independent $\Rightarrow \mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$ (decorrelated r.v.)

Moments of a real r.v.

Definitions \& vocabulary : let X real r.v. and an integer $k \geq 1$

- Moment of order k of $X: m_{k}(X) \stackrel{\text { def }}{=} \mathbb{E}\left(X^{k}\right)$.
- Centered moment of order k of $X: \sigma_{k}(X) \stackrel{\text { def }}{=} \mathbb{E}\left((X-\mathbb{E}(X))^{k}\right)$.
- Variance of $X: \operatorname{var}(X) \stackrel{\text { def }}{=} \sigma_{2}(X)$ ("dispersion" around the mean).
- Ecart-type/standard deviation of $X: \sqrt{\operatorname{var}(X)}$ (often denoted $\sigma)$.

Proposition (properties of variance)

- $\operatorname{var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$.
- $\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)$.
- X and Y independent $\Rightarrow \operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$.

Events seen as r.v.

Proposition (event \rightarrow real r.v.)
If A is an event, then its indicator function $\mathbb{1}_{A}$ is a real r.v. such that $\mathbb{E}\left(\mathbb{1}_{A}\right)=\mathbb{P}(A)$.

A useful translation :

- one can work on events by computing some expectations
- compatibility between useful definitions like independence
- transfer of results from r.v. to events

Generating functions associated with a real r.v.

Definition (Generating functions associated with a real r.v.)

Let X a real r.v., one can define the next series :

- probabilities $G_{X}(s) \stackrel{\text { def }}{=} \mathbb{E}\left(s^{X}\right) \stackrel{\text { à valeurs }}{\stackrel{=}{=}} \sum_{n} \mathbb{P}(X=n) s^{n}$
- moments $M_{X}(t) \stackrel{\text { def }}{=} \mathbb{E}\left(e^{t X}\right) \stackrel{\text { si } \stackrel{<+\infty}{=}}{\text { autour de } 0} \sum_{n} \frac{\mathbb{E}\left(X^{n}\right)}{n!} t^{n}$
- characteristic $\Phi_{X}(t) \stackrel{\text { def }}{=} \mathbb{E}\left(e^{i t X}\right) \stackrel{\text { à valeurs }}{\stackrel{\text { dans }}{=} \mathbb{N}} \sum_{n} \mathbb{P}(X=n) e^{i t n}$

Useful tool both from math and algo points of view.

Generating functions : properties

Proposition (characterization of a law via series)

Let X, Y real r.v. discrete or continuous, X and Y have the same law iff their characteristic series satisfies $\Phi_{X}(t)=\Phi_{Y}(t)$ (thanks to Fourier transformation).
\triangle also true with moments series if finite around 0 , otherwise there exists examples where $F_{X} \neq F_{Y}$ although $\forall k \geq 1, m_{k}(X)=m_{k}(Y)$ (cf. log-normal laws).

Proposition (series for sums of independent r.v.)

Let X, Y real r.v. over the same Ω and independent, then the series associated with the sum satisfy $G_{X+Y}(s)=G_{X}(s) G_{Y}(s)$, $M_{X+Y}(t)=M_{X}(t) M_{Y}(t), \Phi_{X+Y}(t)=\Phi_{X}(t) \Phi_{Y}(t)$.

Classical discrete laws

Definition

Let X discrete real r.v., it is said :

- uniform if $\mathbb{P}(X=i)=1 / n$ for $1 \leq i \leq n$
- Bernoulli if $X= \begin{cases}1 & \text { with proba } p \\ 0 & \text { with proba } 1-p\end{cases}$
- binomial if $\mathbb{P}(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i}$ for $0 \leq i \leq n$
- geometric if $\mathbb{P}(X=i)=p(1-p)^{i-1}$ for $i \geq 1$
- Poisson if $\mathbb{P}(X=i)=e^{-\lambda} \lambda^{i} / i!$ for $i \geq 0$

Classical continuous laws

Definition

Let X continuous real r.v. of density f, it is said :

- uniform if $f(x)=1 /(b-a)$ for $a \leq x \leq b$
- exponential if $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0$
- normal if $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$ over \mathbb{R} (denoted $\left.\mathscr{N}\left(\mu, \sigma^{2}\right)\right)$
- log-normal if $f(x)=\frac{1}{x \sqrt{2 \pi}} \exp \left(-\frac{(\log x)^{2}}{2}\right)$ for $x>0$

An art of inequalities (I)

Proposition (large deviations : an inequality about distribution tails)
Let h function from \mathbb{R} to \mathbb{R}_{+}such that $h(X)$ remains a real r.v., then for all $a>0, \mathbb{P}(h(X) \geq a) \leq \frac{\mathbb{E}(h(X))}{a}$.

Corollary (Markov inequality)
For all $a>0, \mathbb{P}(X \geq a) \leq \frac{\mathbb{E}|X|}{a}$.

Corollary (Bienaymé-Tchebychev inequality)

For all $a>0, \mathbb{P}(|X-\mathbb{E}(X)| \geq a) \leq \frac{\operatorname{var}(X)}{a^{2}}$.

An art of inequalities (II)

Proposition (Jensen inequality)

Let h convex function from \mathbb{R} to \mathbb{R} and X real r.v. with $\mathbb{E}(X)<+\infty$, then $\mathbb{E}(h(X)) \geq h(\mathbb{E}(X))$.

Proposition (Hölder inequality)

Let $p, q \geq 1$ real nbs such that $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\mathbb{E}|X Y| \leq\left(\mathbb{E}\left|X^{p}\right|\right)^{1 / p}\left(\mathbb{E}\left|X^{q}\right|\right)^{1 / q} .
$$

Proposition (Minkowski inequality)

Let $p \geq 1$ real nb, then $\left[\mathbb{E}\left(|X+Y|^{p}\right)\right]^{1 / p} \leq\left(\mathbb{E}\left|X^{p}\right|\right)^{1 / p}+\left(\mathbb{E}\left|Y^{p}\right|\right)^{1 / p}$.

An art of inequalities (III)

Proposition (Chernoff inequality)

Let X_{1}, \ldots, X_{n} independent real r.v. with values in $\{0,1\}$, let $X=\sum_{i=1}^{n} X_{i}$ and $\mu=\mathbb{E}(X)$, then for all $\delta>0$,

$$
\mathbb{P}(X>(1+\delta) \mu) \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}
$$

Proposition (Hoeffding inequality)

Let X_{1}, \ldots, X_{n} independent real v.a. a.s bounded with $\mathbb{P}\left(X_{i} \in\left[a_{i}, b_{i}\right]\right)=1$ for $1 \leq i \leq n$, i.e. $\bar{X}=\left(\sum_{i=1}^{n} X_{i}\right) / n$ their empirical mean, then

$$
\mathbb{P}(|\bar{X}-\mathbb{E}(\bar{X})| \geq t) \leq 2 \exp \left(-\frac{2 t^{2} n^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

Convergence modes

Let $\left(X_{n}\right)_{n \in \mathbb{N}}, X$ real r.v. on the same probability space $(\Omega, \mathscr{F}, \mathbb{P})$,
Definition (convergence in law / in distribution)
$X_{n} \xrightarrow[n \rightarrow+\infty]{\text { loi/D }} X$ if $\forall x$ pt of continuity of $F_{X}, F_{X_{n}}(x) \underset{n \rightarrow+\infty}{\longrightarrow} F_{X}(x)$.

Definition (convergence in proba)

$$
X_{n} \xrightarrow[n \rightarrow+\infty]{P} X \text { if } \forall \varepsilon>0, \mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right) \underset{n \rightarrow+\infty}{\longrightarrow} 0 .
$$

Definition (convergence almost sure)

$$
X_{n} \underset{n \rightarrow+\infty}{\text { p.s. } / \text { a.s. }} X \text { if } \mathbb{P}\left(\left\{\omega \in \Omega \mid X_{n}(\omega) \underset{n \rightarrow+\infty}{\longrightarrow} X(\omega)\right\}\right)=1 .
$$

Remark : "same proba space" not necessary for conv, in law

Comparison of convergences

Theorem (comparison of convergence modes)

Let $\left(X_{n}\right)_{n \in \mathbb{N}}, X$ real r.v. on the same proba space $(\Omega, \mathscr{F}, \mathbb{P})$, then : $X_{n} \xrightarrow{\text { p.s. }} X \Rightarrow X_{n} \xrightarrow{P} X \Rightarrow X_{n} \xrightarrow{D} X$.

Beware of traps:
$\triangle X_{n} \xrightarrow{\text { p.s. }} X \notin X_{n} \xrightarrow{P} X \notin X_{n} \xrightarrow{D} X$
$\triangle X_{n} \xrightarrow{D} X \nRightarrow X_{n}-X \xrightarrow{D} 0$
$\triangle X_{n} \xrightarrow{\text { p.s. }} X \nRightarrow \mathbb{E}\left(X_{n}\right) \longrightarrow \mathbb{E}(X)$

A tip of integration :

- $X_{n} \geq 0$ a.s. and $X_{n} \leq X_{n+1}$ a.s. $\Rightarrow \mathbb{E}\left(X_{n}\right) \longrightarrow \mathbb{E}(X)$
- $\forall n,\left|X_{n}\right| \leq Y$ a.s. and $\mathbb{E}|Y|<\infty \Rightarrow \mathbb{E}\left(X_{n}\right) \longrightarrow \mathbb{E}(X)$

Convergences \& recurrent events

Notation : let $\left(A_{n}\right)_{n \in \mathbb{N}}$ a sequence of events, $\left\{A_{n} \infty\right.$ often $\} \stackrel{\text { def }}{=}\left\{\omega \in \Omega \mid \omega \in A_{n}\right.$ for ∞ many $\left.A_{n}\right\}=$ with \cup and \cap ?

Theorem (CNS of convergence a.s.)

$X_{n} \xrightarrow{\text { p.s. }} X$ iff $\forall \varepsilon>0, \mathbb{P}\left(\left|X_{n}-X\right| \geq \varepsilon \infty\right.$ often $)=0$.

Theorem (Borel-Cantelli)

Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ a sequence of events,

- If $\sum_{n} \mathbb{P}\left(A_{n}\right)<\infty$, then $\mathbb{P}\left(A_{n} \infty\right.$ often $)=0$.
- If $\sum_{n} \mathbb{P}\left(A_{n}\right)=\infty$ and A_{n} independent, then $\mathbb{P}\left(A_{n} \infty\right.$ often $)=1$.

Convergences \& recurrent events

Notation : let $\left(A_{n}\right)_{n \in \mathbb{N}}$ a sequence of events, $\left\{A_{n} \infty\right.$ often $\} \stackrel{\text { def }}{=}\left\{\omega \in \Omega \mid \omega \in A_{n}\right.$ for ∞ many $\left.A_{n}\right\}=\cap_{k \geq 0} \cup_{n \geq k} A_{n}$.

Theorem (CNS of convergence a.s.)

$X_{n} \xrightarrow{\text { p.s. }} X$ iff $\forall \varepsilon>0, \mathbb{P}\left(\left|X_{n}-X\right| \geq \varepsilon \infty\right.$ often $)=0$.

Theorem (Borel-Cantelli)

Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ a sequence of events,

- If $\sum_{n} \mathbb{P}\left(A_{n}\right)<\infty$, then $\mathbb{P}\left(A_{n} \infty\right.$ often $)=0$.
- If $\sum_{n} \mathbb{P}\left(A_{n}\right)=\infty$ and A_{n} independent, then $\mathbb{P}\left(A_{n} \infty\right.$ often $)=1$.

Limit theorems

- $\left(X_{n}\right)_{n \geq 1}$ i.i.d. r.v. $=$ defined on the same probability space, independent, identically distributed (same law).
- Empirical mean $\overline{X_{n}} \stackrel{\text { def }}{=} \frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)$.

Theorem (weak law of large numbers, simple proof when $\sigma_{2}<\infty$)
Let $\left(X_{n}\right)_{n \geq 1}$ i.i.d. where $\mu=\mathbb{E}\left(X_{1}\right)$ finite, then $\overline{X_{n}} \xrightarrow{P} \mu$.
Theorem (strong law of large numbers, simple proof when $\sigma_{4}<\infty$)
Let $\left(X_{n}\right)_{n \geq 1}$ i.i.d. where $\mu=\mathbb{E}\left(X_{1}\right)$ finite, then $\overline{X_{n}} \xrightarrow{\text { p.s. }} \mu$.

Theorem (central limite theorem)

Let $\left(X_{n}\right)_{n \geq 1}$ i.i.d. where $\mu=\mathbb{E}\left(X_{1}\right)$ and $\sigma^{2}=\operatorname{var}\left(X_{1}\right)$ finite, then

$$
\frac{\sqrt{n}}{\sigma}\left(\overline{X_{n}}-\mu\right) \xrightarrow{D} \mathscr{N}(0,1) .
$$

Illustrations of convergence modes

Vocabulary : stochastic process : evolution of r.v. formalised by a sequence $\left(X_{t}\right)_{t \in \mathbb{N} \text { ou } \mathbb{R}_{+}}$, of r.v. over the same space $(\Omega, \mathscr{F}, \mathbb{P}) \rightarrow$ a trajectory/réalisation : the sequence $\left(X_{t}(\omega)\right)_{t}$ for a fixed $\omega \in \Omega$.
cv in law

global repartition of trajectories becomes invariant
cv a.s.

each trajectory converges individually (a.s.)

Illustrations of convergence modes

Vocabulary : stochastic process : evolution of r.v. formalised by a sequence $\left(X_{t}\right)_{t \in \mathbb{N} \text { ou } \mathbb{R}_{+}}$, of r.v. over the same space $(\Omega, \mathscr{F}, \mathbb{P}) \rightarrow$ a trajectory/réalisation : the sequence $\left(X_{t}(\omega)\right)_{t}$ for a fixed $\omega \in \Omega$.
cv in law

global repartition of trajectories becomes invariant

cv a.s.

each trajectory converges individually (a.s.)
temps

