Performance Evaluation and Networks

Refresher course in Probability

Definitions & notations First properties Dependance / Indep / Conditional probabilities

イロト イポト イヨト イヨト

General framework : random experiments

Experiments & Randomness :

- System/Système (general meaning)
- Experiment/trial/expérience/tirage/épreuve
- Outcome/résultat/éventualité/réalisation
- Event/événement = set of outcomes, which is interesting and measurable

Usual working hypothesis :

- only information = list Ω of outcomes and a measure of their occurences via the measures of events.
- sometimes, no precise information about Ω, work focused on a reduced set of events of known measures.

Definitions & notations First properties Dependance / Indep / Conditional probabilities

(日) (周) (日) (日) (日)

General framework : random experiments

Experiments & Randomness :

- System/Système (general meaning) on which one can do
- Experiment/trial/expérience/tirage/épreuve which produces
- Outcome/résultat/éventualité/réalisation unknown a priori
- Event/événement = set of outcomes, which is interesting and measurable

Usual working hypothesis :

- only information = list Ω of outcomes and a measure of their occurences via the measures of events.
- sometimes, no precise information about Ω, work focused on a reduced set of events of known measures.

Definitions & notations First properties Dependance / Indep / Conditional probabilities

Formalisation

Definition (espace probabilisé/de probabilités/probability space)

A probability space is a triplet $(\Omega, \mathscr{F}, \mathbb{P})$ where :

- Ω set called univers/sample space
- \mathscr{F} set of subsets of Ω (the "events")
- $\mathbb P$ function from $\mathscr F$ to $\mathbb R$

satisfying the following properties :

- \mathscr{F} tribu/ σ -algèbre/ σ -field :
 - $\Omega \in \mathscr{F}$ and $\forall A \in \mathscr{F}, \overline{A} \in \mathscr{F}$
 - $\forall \{A_n, n \ge 0\}$ finite or countable family from $\mathscr{F}, \cup_{n \ge 0} A_n \in \mathscr{F}$.
- P probability measure :
 - $\mathbb{P}(\Omega) = 1$ and $\forall A \in \mathscr{F}, \ 0 \leq \mathbb{P}(A) \leq 1$
 - for any finite or countable union of events A_n ∈ ℱ pairwise disjoint, P(∪_nA_n) = ∑_nP(A_n).

Definitions & notations First properties Dependance / Indep / Conditional probabilities

Vocabulary & first remarks

Vocabulary :

- $\omega \in \Omega$ called outcome/réalisation.
- A ∈ ℱ called event/événement.
- ω is a realisation/réalise/realizes A if $\omega \in A$.
- Almost sure event : $A \in \mathscr{F}$ such that $\mathbb{P}(A) = 1$
- Negligible event : $A \in \mathscr{F}$ such that $\mathbb{P}(A) = 0$

Remarks :

- Events of interest are usually defined in extenso (list of elements ω) or by properties
- Axioms $\Rightarrow \emptyset \in \mathscr{F}$ and $\mathbb{P}(\emptyset) = 0$

 $\underline{\land}$ you may encounter almost sure events (resp. negligible) different from Ω (resp. \emptyset)

Definitions & notations First properties Dependance / Indep / Conditional probabilities

Examples of probability spaces

Examples of σ -algebra?

Examples of probability measures?

Definitions & notations First properties Dependance / Indep / Conditional probabilities

Examples of probability spaces

Examples of σ -algebra :

- any Ω and $\mathscr{F} = \mathscr{P}(\Omega)$
- Borelian sets B(R) : smallest σ-algebra on R containing open intervals.

Examples of probability measures :

- Case where 𝒫(Ω) with finite or countable Ω : any function from Ω to ℝ₊ whose sum over Ω is 1 can be extended in a probability measure over 𝒫(Ω).
- Case of borelian sets $\mathscr{B}(\mathbb{R})$: Lebesgue measure (1901).

 $\underline{\land}$ Some borelian sets can not be obtained by a finite number of countable unions / intersections of open intervals.

Definitions & notations First properties Dependance / Indep / Conditional probabilities

First properties

Proposition (complementary)

$$\forall A \in \mathscr{F}, \ \mathbb{P}(\overline{A}) = 1 - \mathbb{P}(A)$$

Proposition (inclusion)

$$\forall A, B \in \mathscr{F}, si A \subseteq B alors \mathbb{P}(A) \leq \mathbb{P}(B)$$

Proposition (inclusion/exclusion)

 $\forall A, B \in \mathscr{F}, \ \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$

Proposition (generalised inclusion/exclusion)

 $\begin{aligned} \forall A_1, \dots, A_n \in \mathcal{F}, \ \mathbb{P}(\cup_{i=1}^n A_i) &= \sum_i \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \\ \sum_{i < j < k} \mathbb{P}(A_i \cap A_j \cap A_k) - \dots + (-1)^{n+1} \mathbb{P}(A_1 \cap \dots \cap A_n) \end{aligned}$

Definitions & notations First properties Dependance / Indep / Conditional probabilities

イロト イポト イヨト イヨト

First properties

Proposition (sub-additivity)

 $\forall \{A_n, n \in \mathbb{N}\}\$ family from \mathscr{F} , $\mathbb{P}(\cup_{n \in \mathbb{N}} A_n) \leq \sum_{n \in \mathbb{N}} \mathbb{P}(A_n)$

Proposition (continuity)

Let A_n , $n \ge 0$ be a sequence in \mathscr{F} such that $A_0 \subseteq A_1 \subseteq \cdots \subseteq A_n \subseteq A_{n+1} \subseteq \cdots$, let us denote $A = \bigcup_{n\ge 0} A_n$ its limit, we have $\mathbb{P}(A) = \lim_{n \to +\infty} \mathbb{P}(A_n)$.

Proposition (law of total probabilities)

Let $A \in \mathscr{F}$ and $\{B_n, n \ge 0\}$ a finite or countable family from \mathscr{F} which partitions Ω , then $\mathbb{P}(A) = \sum_{n \ge 0} \mathbb{P}(A \cap B_n)$.

Definitions & notations First properties Dependance / Indep / Conditional probabilities

Dependance between events

Definition (conditional probabilities)

Let $A, B \in \mathscr{F}$ with $\mathbb{P}(B) > 0$, the probability of A knowing/given B is defined by $\mathbb{P}(A|B) \stackrel{\text{def}}{=} \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$.

Definition (independance of evenments)

- $A, B \in \mathscr{F}$ are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$
- $\{A_n, n \in \mathbb{N}\}$ is a family of independent events of \mathscr{F} if for all $I \subseteq \mathbb{N}$ finite, $\mathbb{P}(\bigcap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i)$.

Proposition (law of total probabilities, conditional version)

Let $A \in \mathscr{F}$ and $\{B_n, n \ge 0\}$ be a finite or countable family finie of \mathscr{F} which partitions Ω , then $\mathbb{P}(A) = \sum_{n \ge 0} \mathbb{P}(A|B_n)\mathbb{P}(B_n)$, with the convention that if $\mathbb{P}(B_n) = 0$, the corresponding term is 0.

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

Random variables (r.v.)

Definition (general r.v.)

A random variable with values in E is a function X from Ω to E, where $(\Omega, \mathscr{F}, \mathbb{P})$ is a probability space and E is equipped with the σ -algebra \mathscr{B} , such that $\forall B \in \mathscr{B}$, $\{X \in B\} \stackrel{\text{def}}{=} \{\omega \in \Omega | X(\omega) \in B\} = X^{-1}(B) \in \mathscr{F}.$

Definition (real r.v.)

A real random variable is a r.v. X from Ω to \mathbb{R} equipped with borelians, that is $\forall x \in \mathbb{R}$, $\{X \le x\} \stackrel{\text{def}}{=} \{\omega \in \Omega | X(\omega) \le x\} = X^{-1}(] - \infty, x]) \in \mathcal{F}.$

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

Fonction de répartition / cumulative distribution function

Definition (cumulative distribution function of a real r.v.)

The cumulative distribution function for the r.v. X is the function F_x from \mathbb{R} to [0,1] defined by $F_X(x) = \mathbb{P}(X \le x)$.

Proposition (regularity of cumulative distrib. functions for real r.v.)

F cumulative distribution function if and only if :

- $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to+\infty} F(x) = 1$,
- F non decreasing,
- F right continuous $(\forall x \in \mathbb{R}, \lim_{h \to 0, h > 0} F(x+h) = F(x))$.

Connaissance de $F_X \rightarrow \mathbb{P}(X > x)$, $\mathbb{P}(a < X \le b)$, $\mathbb{P}(X = x)$, ...

(日) (周) (王) (王) (王)

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

Discrete / continuous real random variable

Definition (discrete real r.v.)

A real r.v. X is called discrete if it gets its values from a finite or countable set $\{x_n, n \ge 0\}$ in \mathbb{R} . The function $f(x) = \mathbb{P}(X = x)$ is called mass/law/distribution (discret).

Definition (continuous real r.v.)

A real r.v. X is called continuous if its cumulative distrib function F satisfies $F(x) = \int_{-\infty}^{x} f(u) du$ where f from \mathbb{R} dans $[0, +\infty[$ is integrable, f is called density/loi/distribution (continuous).

Remarques : Let X a real r.v.,

- If X discrete, $f(x) = \mathbb{P}(X = x)$ fully characterizes F.
- If X continuous, F is continuous and $\forall x \in \mathbb{R}$, $\mathbb{P}(X = x) = 0$.
- There exists other types of real r.v. (singular, some mixes ...)

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

Discrete / continuous real random variable

Proposition (usual utilisation of laws)

Let X real r.v. discrete/continuous of mass/density f, then for any borelian B of \mathbb{R} ,

- $\mathbb{P}(X \in B) = \sum_{x \in B} f(x)$ in the discrete case,
- $\mathbb{P}(X \in B) = \int_{x \in B} f(x) dx$ in the continuous case.

Remark : those formulas also apply to random vectors $X = (X_1, ..., X_n)$ with *B* borelian of \mathbb{R}^n , by putting multiple sums/integrals (cf next slides about random vectors).

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

Random vector & joint distribution

Definition (cumulative distribution fct of a random vector)

Let X_1, \ldots, X_n be real r.v. over the same set Ω , the cumulative distribution for of vector $X = (X_1, \ldots, X_n)$ is defined from \mathbb{R}^n to \mathbb{R} by $F(x_1, \ldots, x_n) \stackrel{\text{def}}{=} \mathbb{P}(X_1 \leq x_1, \ldots, X_n \leq x_n).$

Definition (discrete joint distribution)

If X takes a finite or countable nb of values, F is characterized by its joint distribution $f(x_1,...,x_n) \stackrel{\text{def}}{=} \mathbb{P}(X_1 = x_1,...,X_n = x_n)$.

Definition (continuous joint distribution)

The r.v. X_1, \ldots, X_n are said conjointly continuous if it exists f from \mathbb{R}^n to \mathbb{R} , integrable and called joint distribution, such that $F(x_1, \ldots, x_n) = \int_{u_1=-\infty}^{x_1} \cdots \int_{u_n=-\infty}^{x_n} f(u_1, \ldots, u_n) du_1 \ldots du_n.$

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

Independence of r.v.

Definition (independence of r.v.)

 X_1, \ldots, X_n real r.v. over the same Ω are said independent if the cumulative distrib fct of the vector satisfies $\forall x_1, \ldots, x_n$, $F(x_1, \ldots, x_n) = F_{X_1}(x_1) \cdots F_{X_n}(x_n)$ with the marginal distrib $F_{X_i}(x_i) \stackrel{\text{def}}{=} \mathbb{P}(X_i \leq x_i) = F(\infty, \ldots, x_i, \ldots, \infty).$

Proposition (independence for discrete/continuous cases)

 $X_1,...,X_n$ real discrete/continuous r.v. over the same Ω with masses/densities $f_1,...,f_n$ are independent iff $\forall x_1,...,x_n$, the joint distribution satisfies $f(x_1,...,x_n) = f_1(x_1)\cdots f_n(x_n)$ (at pts where $F_{(X_1,...,X_n)}$ differentiable in the continuous case).

(日) (周) (王) (王) (王)

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

Espérance / moyenne / expectation / mean

Definition (expectation of a discrete real r.v.)

The expectation of a discrete real r.v. X of mass f is $\mathbb{E}(X) \stackrel{\text{def}}{=} \sum_{x \in \mathbb{R}} x f(x)$

(finite or countable nb fini of non null terms) on condition that this sum is absolutely convergent (i.e. $\sum_{x \in \mathbb{R}} |xf(x)| < +\infty$).

Definition (expectation of a continuous real r.v.)

The expectation of a continuous real r.v. X of density f is $\mathbb{E}(X) \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} xf(x)dx$ on condition that this integral is Lebesgue integrable (i.e. $\int_{-\infty}^{+\infty} |xf(x)|dx < +\infty).$

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

Expectation & composition of functions

Proposition (composition for discrete real r.v.)

Let X discrete r.v. of mass f, and g function from \mathbb{R} to \mathbb{R} , then Y = g(X) is a discrete real r.v. and $\mathbb{E}(g(X)) = \sum_{x} g(x)f(x)$, on condition that this sum is absolutely convergent.

Proposition (composition for continuous real r.v.)

Let X continuous r.v. of density f, and g function from \mathbb{R} to \mathbb{R} such that Y = g(X) is a continuous r.v., then $\mathbb{E}(g(X)) = \int_X g(x)f(x)dx$, on condition that it is Lebesgue integrable.

Useful formulas to compute $\mathbb{E}(Y)$ without knowing the discrete or continuous law f_Y of Y ("Law of the Unconscious Statistician")

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

Expectation & composition for random vectors

Proposition (composition for discrete joint distribution)

Let $X = (X_1, ..., X_n)$ r.v. of discrete joint distrib f, and g function from \mathbb{R}^n to \mathbb{R} , then Y = g(X) is a discrete r.v. and $\mathbb{E}(g(X)) = \sum_{x_1} \cdots \sum_{x_n} g(x_1, ..., x_n) f(x_1, ..., x_n)$, on condition that this sum is absolutely convergent.

Proposition (composition for continuous joint distribution)

Let $X = (X_1, ..., X_n)$ r.v. of continuous joint distrib f, and gfunction from \mathbb{R}^n to \mathbb{R} such that Y = g(X) is a continuous r.v., then $\mathbb{E}(g(X)) = \int_{x_1} \cdots \int_{x_n} g(x_1, ..., x_n) f(x_1, ..., x_n) dx_1 \cdots dx_n$, on condition that it is Lebesgue integrable.

Simple extension of the case of real random variables (same proofs).

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

First properties of expectation/mean

Lemma ("telescope")

Let X real r.v.,

- If X discrete with values in \mathbb{N} , $\mathbb{E}(X) = \sum_{x=0}^{+\infty} \mathbb{P}(X > x)$.
- If X continuous of null density over \mathbb{R}^*_- , $\mathbb{E}(X) = \int_{x=0}^{+\infty} \mathbb{P}(X > x) dx.$

Proposition (monotony/linearity/constants/decorrelation)

Let X, Y real r.v. discrete or continuous,

- If $X \ge 0$, $\mathbb{E}(X) \ge 0$.
- If $a, b \in \mathbb{R}$, $\mathbb{E}(aX + bY) = a \mathbb{E}(X) + b \mathbb{E}(Y)$,
- $\mathbb{E}(\mathbb{1}_{\Omega}) = 1$,
- X, Y independent $\Rightarrow \mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ (decorrelated r.v.)

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

Moments of a real r.v.

Definitions & vocabulary : let X real r.v. and an integer $k \ge 1$

- Moment of order k of X : $m_k(X) \stackrel{\text{\tiny def}}{=} \mathbb{E}(X^k)$.
- Centered moment of order k of X : $\sigma_k(X) \stackrel{\text{\tiny def}}{=} \mathbb{E}((X \mathbb{E}(X))^k)$.
- Variance of X : var(X) ^{def} = σ₂(X) ("dispersion" around the mean).
- Ecart-type/standard deviation of $X : \sqrt{var(X)}$ (often denoted σ).

Proposition (properties of variance)

- $var(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$.
- $var(aX+b) = a^2 var(X)$.
- X and Y independent \Rightarrow var(X + Y) = var(X) + var(Y).

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

Events seen as r.v.

Proposition (event \rightarrow real r.v.)

If A is an event, then its indicator function $\mathbb{1}_A$ is a real r.v. such that $\mathbb{E}(\mathbb{1}_A) = \mathbb{P}(A)$.

A useful translation :

- one can work on events by computing some expectations
- compatibility between useful definitions like independence
- transfer of results from r.v. to events

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

Generating functions associated with a real r.v.

Definition (Generating functions associated with a real r.v.)

Let X a real r.v., one can define the next series :

• probabilities $G_X(s) \stackrel{\text{def}}{=} \mathbb{E}(s^X) \stackrel{\text{a valeurs}}{=} \sum_n \mathbb{P}(X=n)s^n$ dans \mathbb{N}

• moments
$$M_X(t) \stackrel{\text{def}}{=} \mathbb{E}(e^{tX}) \stackrel{\text{si} <+\infty}{=} \sum_{\substack{n \\ \text{autour de 0}}} \sum_n \frac{\mathbb{E}(X^n)}{n!} t^n$$

• characteristic
$$\Phi_X(t) \stackrel{\text{def}}{=} \mathbb{E}(e^{itX}) \stackrel{\text{a valeurs}}{=} \sum_n \mathbb{P}(X=n) e^{itn}$$

dans \mathbb{N}

Useful tool both from math and algo points of view.

(日) (周) (日) (日) (日)

r.v. general / real / discrete / continuous Joint distributions / dependence Expectation / moments Generating series / functions

Generating functions : properties

Proposition (characterization of a law via series)

Let X, Y real r.v. discrete or continuous, X and Y have the same law iff their characteristic series satisfies $\Phi_X(t) = \Phi_Y(t)$ (thanks to Fourier transformation).

 \wedge also true with moments series if finite around 0, otherwise there exists examples where $F_X \neq F_Y$ although $\forall k \ge 1$, $m_k(X) = m_k(Y)$ (cf. log-normal laws).

Proposition (series for sums of independent r.v.)

Let X, Y real r.v. over the same Ω and independent, then the series associated with the sum satisfy $G_{X+Y}(s) = G_X(s)G_Y(s)$, $M_{X+Y}(t) = M_X(t)M_Y(t)$, $\Phi_{X+Y}(t) = \Phi_X(t)\Phi_Y(t)$.

Typical laws Inequalities Convergence

Classical discrete laws

Definition

Let X discrete real r.v., it is said :

- uniform if $\mathbb{P}(X = i) = 1/n$ for $1 \le i \le n$
- Bernoulli if $X = \begin{cases} 1 & \text{with proba } p \\ 0 & \text{with proba } 1-p \end{cases}$
- binomial if $\mathbb{P}(X = i) = {n \choose i} p^i (1-p)^{n-i}$ for $0 \le i \le n$
- geometric if $\mathbb{P}(X = i) = p(1-p)^{i-1}$ for $i \ge 1$
- Poisson if $\mathbb{P}(X = i) = e^{-\lambda} \lambda^i / i!$ for $i \ge 0$

・ロト ・ 同ト ・ ヨト ・ ヨト

Typical laws Inequalities Convergence

Classical continuous laws

Definition

Let X continuous real r.v. of density f, it is said :

• uniform if f(x) = 1/(b-a) for $a \le x \le b$

• exponential if
$$f(x) = \lambda e^{-\lambda x}$$
 for $x \ge 0$

• normal if
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$$
 over \mathbb{R} (denoted $\mathcal{N}(\mu, \sigma^2)$)

• log-normal if
$$f(x) = \frac{1}{x\sqrt{2\pi}}exp(-\frac{(\log x)^2}{2})$$
 for $x > 0$

・ロト ・ 同ト ・ ヨト ・ ヨト

Typical laws Inequalities Convergence

An art of inequalities (I)

Proposition (large deviations : an inequality about distribution tails)

Let h function from \mathbb{R} to \mathbb{R}_+ such that h(X) remains a real r.v., then for all a > 0, $\mathbb{P}(h(X) \ge a) \le \frac{\mathbb{E}(h(X))}{a}$.

Corollary (Markov inequality)

For all a > 0, $\mathbb{P}(X \ge a) \le \frac{\mathbb{E}|X|}{a}$.

Corollary (Bienaymé-Tchebychev inequality)

For all
$$a > 0$$
, $\mathbb{P}(|X - \mathbb{E}(X)| \ge a) \le \frac{\operatorname{var}(X)}{a^2}$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

э

Typical laws Inequalities Convergence

An art of inequalities (II)

Proposition (Jensen inequality)

Let h convex function from \mathbb{R} to \mathbb{R} and X real r.v. with $\mathbb{E}(X) < +\infty$, then $\mathbb{E}(h(X)) \ge h(\mathbb{E}(X))$.

Proposition (Hölder inequality)

Let
$$p, q \ge 1$$
 real nbs such that $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\mathbb{E}|XY| \le (\mathbb{E}|X^p|)^{1/p} (\mathbb{E}|X^q|)^{1/q}$$

Proposition (Minkowski inequality)

Let $p \ge 1$ real nb, then $[\mathbb{E}(|X+Y|^p)]^{1/p} \le (\mathbb{E}|X^p|)^{1/p} + (\mathbb{E}|Y^p|)^{1/p}$.

(日) (周) (王) (王) (王)

Typical laws Inequalities Convergence

An art of inequalities (III)

Proposition (Chernoff inequality)

Let
$$X_1, ..., X_n$$
 independent real r.v. with values in {0,1}, let $X = \sum_{i=1}^n X_i$ and $\mu = \mathbb{E}(X)$, then for all $\delta > 0$,
 $\mathbb{P}(X > (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$

Proposition (Hoeffding inequality)

Let $X_1, ..., X_n$ independent real v.a. a.s bounded with $\mathbb{P}(X_i \in [a_i, b_i]) = 1$ for $1 \le i \le n$, i.e. $\overline{X} = (\sum_{i=1}^n X_i)/n$ their empirical mean, then

$$\mathbb{P}(|\overline{X} - \mathbb{E}(\overline{X})| \ge t) \le 2\exp\left(-\frac{2t^2n^2}{\sum_{i=1}^{n}(b_i - a_i)^2}\right)$$

(日) (周) (王) (王) (王)

Typical laws Inequalities Convergence

Convergence modes

Let $(X_n)_{n\in\mathbb{N}}, X$ real r.v. on the same probability space $(\Omega, \mathscr{F}, \mathbb{P})$,

Definition (convergence in law / in distribution)

$$X_n \xrightarrow[n \to +\infty]{\text{loi}/D} X$$
 if $\forall x$ pt of continuity of F_X , $F_{X_n}(x) \xrightarrow[n \to +\infty]{} F_X(x)$.

Definition (convergence in proba)

$$X_n \xrightarrow[n \to +\infty]{P} X \text{ if } \forall \varepsilon > 0, \ \mathbb{P}(|X_n - X| > \varepsilon) \xrightarrow[n \to +\infty]{O}.$$

Definition (convergence almost sure)

$$X_n \xrightarrow[n \to +\infty]{p.s./a.s.}_{n \to +\infty} X \text{ if } \mathbb{P}(\{\omega \in \Omega | X_n(\omega) \xrightarrow[n \to +\infty]{} X(\omega)\}) = 1.$$

Remark : "same proba space" not necessary for conv. in law = ,

Typical laws Inequalities Convergence

Comparison of convergences

Theorem (comparison of convergence modes)

Let $(X_n)_{n \in \mathbb{N}}, X$ real r.v. on the same proba space $(\Omega, \mathscr{F}, \mathbb{P})$, then : $X_n \xrightarrow{p.s.} X \Rightarrow X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{D} X$.

Beware of traps :

A tip of integration :

- $X_n \ge 0$ a.s. and $X_n \le X_{n+1}$ a.s. $\Rightarrow \mathbb{E}(X_n) \longrightarrow \mathbb{E}(X)$
- $\forall n, |X_n| \leq Y \text{ a.s. and } \mathbb{E}|Y| < \infty \Rightarrow \mathbb{E}(X_n) \longrightarrow \mathbb{E}(X)$

Typical laws Inequalities Convergence

Convergences & recurrent events

Notation : let $(A_n)_{n \in \mathbb{N}}$ a sequence of events, $\{A_n \infty \text{ often}\} \stackrel{\text{def}}{=} \{\omega \in \Omega | \omega \in A_n \text{ for } \infty \text{ many } A_n\} = \text{with } \cup \text{ and } \cap ?$

Theorem (CNS of convergence a.s.)

$$X_n \xrightarrow{p.s.} X \text{ iff } \forall \varepsilon > 0, \mathbb{P}(|X_n - X| \ge \varepsilon \infty \text{ often}) = 0.$$

Theorem (Borel-Cantelli)

Let $(A_n)_{n \in \mathbb{N}}$ a sequence of events,

• If $\sum_{n} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(A_n \infty \text{ often}) = 0$.

• If $\sum_{n} \mathbb{P}(A_n) = \infty$ and A_n independent, then $\mathbb{P}(A_n \infty \text{ often}) = 1$.

(日) (周) (王) (王) (王)

Typical laws Inequalities Convergence

Convergences & recurrent events

Notation : let $(A_n)_{n \in \mathbb{N}}$ a sequence of events, $\{A_n \infty \text{ often}\} \stackrel{\text{def}}{=} \{\omega \in \Omega | \omega \in A_n \text{ for } \infty \text{ many } A_n\} = \bigcap_{k \ge 0} \bigcup_{n \ge k} A_n.$

Theorem (CNS of convergence a.s.)

$$X_n \xrightarrow{p.s.} X \text{ iff } \forall \varepsilon > 0, \mathbb{P}(|X_n - X| \ge \varepsilon \infty \text{ often}) = 0.$$

Theorem (Borel-Cantelli)

Let $(A_n)_{n \in \mathbb{N}}$ a sequence of events,

- If $\sum_{n} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(A_n \infty \text{ often}) = 0$.
- If $\sum_{n} \mathbb{P}(A_n) = \infty$ and A_n independent, then $\mathbb{P}(A_n \infty \text{ often}) = 1$.

Typical laws Inequalities Convergence

Limit theorems

- (X_n)_{n≥1} i.i.d. r.v.= defined on the same probability space, independent, identically distributed (same law).
- Empirical mean $\overline{X_n} \stackrel{\text{def}}{=} \frac{1}{n} (X_1 + \dots + X_n).$

Theorem (weak law of large numbers, simple proof when $\sigma_2 < \infty$)

Let
$$(X_n)_{n\geq 1}$$
 i.i.d. where $\mu = \mathbb{E}(X_1)$ finite, then $\overline{X_n} \xrightarrow{P} \mu$.

Theorem (strong law of large numbers, simple proof when $\sigma_4 < \infty$)

Let
$$(X_n)_{n\geq 1}$$
 i.i.d. where $\mu = \mathbb{E}(X_1)$ finite, then $\overline{X_n} \xrightarrow{p.s.} \mu$.

Theorem (central limite theorem)

Let
$$(X_n)_{n\geq 1}$$
 i.i.d. where $\mu = \mathbb{E}(X_1)$ and $\sigma^2 = var(X_1)$ finite, then
 $\frac{\sqrt{n}}{\sigma}(\overline{X_n} - \mu) \xrightarrow{D} \mathcal{N}(0, 1).$

M1IF - ENS Lyon

Performance Evaluation & Networks

31/32

Typical laws Inequalities Convergence

Illustrations of convergence modes

Vocabulary : stochastic process : evolution of r.v. formalised by a sequence $(X_t)_{t \in \mathbb{N} \text{ ou } \mathbb{R}_+}$, of r.v. over the same space $(\Omega, \mathscr{F}, \mathbb{P}) \to a$ trajectory/réalisation : the sequence $(X_t(\omega))_t$ for a fixed $\omega \in \Omega$.

temps

global repartition of trajectories becomes invariant each trajectory converges individually (a.s.)

temps